P5.10-1) Find the acceleration of block A after the blocks are released. The mass of block A is 20 kg and the mass of block B is 10 kg. Neglect the mass of the pulleys and cables. Also, assume that the pulleys are frictionless.

Given:

Find:

Solution:

Draw a free-body diagram of block A, B and the middle pulley.

Determine the relationship between the acceleration of A and B.

Draw the position coordinates on the figure attached to the problem statement.

_							_
\sim	laulata	tha	2000	leration	of h		Λ
ua	ICUIALE	une	aute	lerauon	OI D	IULK	A -

Write down the equations of motion for all three particles of the system.
Equ of Motion A :
Equ of Motion <i>B</i> :
Equation of Motion pulley:
Use the above equations to solve for the acceleration.